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EFFECT OF HYDRODYMP'lIC INTERACTIONS BETWEEN THE PARTICLES ON THE 
RHEOLOGICAL PROPERTIES OF DILUTE EMULSIONS* 

A.Z. ZINCHFNKO 

The form of mean stress tensor in monodisperse emulsions is studied in the 
second-order approximation with respect to the volume density of the 
particles, for a number of flows which are of rheoloqical interest. It 
is shown how the particular features of the two-particle interaction 
between liquid spheres, especially the non-zero differences between the 
normal stresses in shear flows , give rise to non-Newtonian properties of 
the emulsion. 

We know /l, 2/ that in the case of the second-order approximation 
with respect to the volume concentration of the suspended disperse ph&se 
the mean stress tensor is expressed in terms of two-particle interactions 
in a linear velocity field, and of the binary correlation function. The 
binary function is formed under the action of the macroscopic flow. 
Specific results, however, were obtained only for suspensions and rigid 
spheres /l, 2,'. The present paper deals with the structural model of 
fluid spheres of equal radius, with hydrodynamic and "contact" interactions. 
A number of fundamental deviations from /I/ exist in the case of rheofogic- 
ally strong flows, sincedropflocculation-deflocculation processes must be 
considered (i.e. the formation and disruption of aggregates). A strict 
analysis is given within the framework of the model, of the effect of 
these processes on the binary correlation function. A connection between 
the model of "contact" interaction and the result of the D.L.V.O. theory 
/3-5/is considered. Numerical values are obtained for the Trouton 
viscosity in strong rheologically axisymmetric expanding flows. The 
differences in normal stresses in a strong shear flow are obtained and an 
approximate estimate is given for the shear viscosity and compared with 
experimental data /6/. A method given in /2/ is used to compute the 
effective viscosity of the emulsion in arbitrary, rheologically weak flows 
in which Brownian motion predomaintes. Considerable use is made of the 
exact computational methods and asymptotic representations of hydrodynamic 
functions determining the pairwise interaction of fluid spheres /7-9/. 

1. A general expression for the mean stress tensor. Consider a locally homo- 

geneous monodisperse emulsion of drops of radius a and viscosity CL' freely sUspended in a 

*Prikl.Matem.Hekhan.,48,2,282-292,1984 
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medium of viscosity p,. The particles are assumed to be spherical due to relatively high 

surface tension. Let the flow be described at the macro level by quasistationary Stokes 

equations. We assume that there are no factors hindering the development of circulation 

within the drops. The possibility that such a model can be realized in practice is pointed 
out in /C/. 

Under the above conditions the mean stress tensor has the form /lo/ 

Here 1.T. represents the spherical part which is of no interest, Eij is the mean deforma- 
tion rate tensor, Sij is the force dipole intensity of a single particle (S and mdenote the 
particle surface and external normal to this surface, v is the local velocity of the fluid 
and a,,, is the stress vector on the outside of the surface). The summation in (1.1) is car- 
ried out over all particles within a macroscopically small volume V. 

Disregarding the Brownian motion, we have, in the quadratic approximation with respect 
to the volume density c /l/ 

(1.2) 

Here P(x, -+ r 1 x0) is the probability density of detecting a particle with the centre at x0 + r, 
provided that a particle exists with centre at 4; n is the number of particles and e&,x, + 

4 -E is the perturbation in the deformation rate tensor at the point x, caused by a single, 
freely suspended sphere with centre at x, + r. When r>e, we have e-E = 0 ((a/r)a). The 
value of e -E averaged over any sphere r= wnst>2a is zero /I./. The explicit expression 
given in /l/ for e(%,,&, + r) - 33 will not be required. The expression S(~,X, f r) in (1.2) 
denotes the force dipole intensity of particle 1 with its centre at x0 in the presence of a 
second sphere with centre at x0 + r in the case when both particles are freely suspended in 
an unbounded fluid with unperturbed deformation rate tensor E. The following general 
rpersentation /l/ holds: 

S(x,,xgfr)=20iaxa'alr,I(1+K)E$_[(E.n)n$n(E.n)]L+ 
(n-E* n)[nnM-(*/&+ '/.&)I])t n=r/r 

(1.3) 

The functions x,.&M, which depend on &h (6 = r;ta)t were studied in /7/. Their numerical 
values as well as their remote and most significant near asymptotic representations are all 
known. 

Thus the stress tensor can be calculated with accuracy to o(8), provided that the 
distribution p(r) to the zeroth approximation in c<f is known. Generally speaking, the 
determination of p.(r) is too complicated since the microstructure depends on the past history 
of the deformations. Below we consider two special cases of steady flows. 

2. Expanding axisymmetric steady flows. According to /l/ the problem of determin- 
ing p(r) involves examining the relative motion of a pair of particles suspended in a fluid 
with unperturbed deformation rate tensor E and vorticity Q. In the zeroth approximation in 
c<1 E and Dare equal to the corresponding mean values for the emulsion. 
sphere 2 relative to sphere 1 has the form /l/ 

The velocity V of 

V=r[nxn+(1-B)E.ni(B-_Af(n.E.n)n] (2.1) 
The functions A (&h),B(f,h) were investigated in /7/. In particular we have 

1>A>B>O, A=O(t+), B=O(Y6) (t;-ccm) (2.2) 
(1 - A)” = 0 (EMhf, 1 - 3, &37df = 0 (i), (c = t - 2 _c 0, X < 00) 

Let us consider the axisymmetric flows with Q = 0, E = con& Let x1, 
of principal axes of the tensor E with origin at the centre of sphere 1, 

q,x, by the system 

E<i = 0 (i # j). 
En = & = -EJ2, 

plane z3 = 
The pattern of relative trajectories is symmetrical about the z,axis and the 

0. The form of the trajectories is given by (2.1) 

5” sin’ 6 cos 8 = Ccp” (Q (2.3) 
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Here 9 is the angle between the r and zQ axis, and C is the intergration constant. FL-Olll 

(2.21 it follows that 'p(2)<00. When 1 C I > C,, = 16/(31/5q? (2)) , th e corresponding trajectory 

arrives frominfinity and returns to infinity without reaching the sphere r = ?_a. We also 
have trajectories arriving from infinity at the sphere r = 9a, and trajectories departing 
from the sphere to infinity. In both cases IC I< C,,. The critical trajectories with C * & 

G touch the sphere r = 2a at 0 = B0 or at n - B0 (9, = arctg f-5 The pattern of relative 
motion in the meridianal half-space is shown in Fig.1 for 
tions of the trajectories become reversed. 

E33< 0 c When E,, > 0, the direc- 

The possibility of the particles coming into contact 
under the action of macroscopic deformation constitutes 
the principal difference between the case of liquid and 
rigid spheres. When h = 00, we have 1 -A = O(e) as 

c +O /ll/, so that (p(2)= 00 and every relative traject- 
ory with C# 0 begins and ends at infinity. 

Certain additional assumptions must be made about the 
non-hydrodynamic short range interactions between the 
particles. Following the D.L.F.O. theory /3-5/,we assume 
the when e<l, the molecular attraction forces and stabil- 

Fig.1 izing repulsion forces between the double electric layers 
of the Sphere surfaces act along the line joining the 

centres. The resultant F of these forces causes the second particle to acquire an additional 
relative radial velocity BoGF where 

B, = (~J~vx)‘, G = x (2A11 - A# 
x = (L + ‘1s) (1 + Q-r 

Here &r(k,&), An&c) are the coefficients of resistance /7, 12/. According to j?/ we 
have, when e-c0 , 

1 -A Y D’f’G, 1.097 < D* (I.) < 2.039 (2.4) 

From (2.1) and (2.4) it follows that when e< 1 and the force F is taken into account, 
we have 

drldt ‘y BoG by&D* (n.E.n) + F] (2.5) 

To estimate the dimensionless non-hydrodynamic force f = F(G~Qz~D* 1 E,, 1)-l, we use the 

results of /3, 5/ 

F(e) = 2xbeY&k s B (P,) 
-A12Tr 

PW=F 

8 (Pw) = 1 

(1 + 3.54p,)(l + 1.77p,y, P,<2 
(SpID)-‘(4.9 - 2.17~;~ + 0.337p;‘), pm > 2 

Here e, = 8.85.1O-~*@/m,e is the relative permittivity of the disperse medium, Y,, is the 
surface potential, k-l denotes the thickness of the double layer, Ai, is the Hamaker con- 
stant and 14, (~10~‘m) is the London wavelength. The stabilized systems are characterized by 
the presence of a positive maximum fmlr and negative minimum fmin for large values of e. 

For example, when e = SO,%', = ZSmv, k-1 =O.OOZum (which agrees with the order of magni- 
tude of the quantities usually adopted in the theory of the stability of emulsions M/B 141). 

A~, = 10-*@ J, o = 2 urn, D* = i.45 (A= 1). 1 &I -500 see-1, pc = iO-3 N.sec.m-2, we have fmax=6.7 
(e = 1.2.10-3 and &,,, z -O.O5(e z 7.5.1O-3). Already, when e = 0.1 we have f= -6.1O-L , so that the 
radius of action of the force F is very small. The value of A,, depending on the combination 
of the disperse and dispersing medium and on the presence of an adsorbed monolayer of emulsi- 

fier /4/, show considerable indeterminacy. When A,, - lo-21 J, we have /,,, z 16 (e z 4.6.10-') and 

I mm= -0.002 (.a= 0.01). 
Leaving aside these estimates, we will assume that fmI > 1, IfmiD I< 1. This justifies 

the idealized model of "contact" interaction. After achieving the contact the centre of the 
second sphere moves along the surface r = 2S as long as n.E.n(O (it follows from (2.5) 

that here the hydrodynamic force Gnp,a*D* (n.E.n) is balanced by the "contact" force). When 
n-E-n = 0 (8 = fJ,or IL-&,), the corresponding trajectory becomes detached (i.e. the spheres 
separate) and the centre of the second sphere begins to move freely in accordance with (2.3). 
The relative velocity V* of contact motion is found from (2.1) as e +O (since F influences 

V,) only) 

Henceforth, the asterisk denotes the limiting values oL 6 the hydrodynamic functions and 

other qualities for the spheres in contact. 
Let us now turn our attention to the problem of determlnlng the binary correlation 
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function, assuming at first that Ess<O (Fig.1). The set of relative trajectories of the 

interacting pairs is best represented, as a flow of a certain (compressibl.e) phase "fluid" 
past the sphere r = 2a. Let us construct a film fonnec? by rotating the trajectories A,A,,AoAa 
about the xS axis. In the "shadow" region bounded by the film we have, in the steady state, 
p(r)=0 in accordance with the model of "contact" interaction. In the remaining part of 

the P space the volume distribution p(r) can be found from the Liouville equation /l/ 

div [p(r) X(r)] = gV *V fp(r)/q (r)] = 0 

4 = (1 -Af-1Cp"3(S)* p = 1 +ofC') (5 +wJ 

(2.7) 

In accordance with the boundary condition p -1, when r+m (there are no remote 

statistical constants /1/j we find, that the volume distribution P (4 = q(r) everywhere at 

r>2a except the shadow region. We have non-zero density lim [q(r)V,l (e -+O) of the flux of 
the phase fluid arriving at the sphere r = 2a, at the segments where n.E.n<O and where 
the surface phase denisty P* must be brought in. The region P* #O is formed by rotating 
the arcs A,A,, AsA& about the x,axis. The densityP*is defined by the balance equation 

div, IP*V*] = -2aqP (2) n.E.n 12.81 

Here div, is the surface divergence. Using (2.6) we find the particular solution 

P* = Z/,ap-* (2)(1 - B*)-l (2.9) 

The general solution P* = const.sin- 29cos-16 of the homogeneous equation generates a surface 
source at 0 = 0, and should be neglected. 

We also have a concentrated phase density P** at the film surface, which can be found 
from the Liouville surface equation div. IP**VI= 0 having first computed the phase fluid flux 
from the sphere r = k. Along the film we have 

P** f V 1 I, sin 6 = (8 JB9) 1 E,, 1 use* (2) (2.10) 

when Ess>O, the film is formed by rotation of the trajectories AgAl, A6A4, and the 
region with surface density of P* by rotatingthearc AzAs aboutthe x8 axis; formulas (2-g) and 
(2.10) both hold. 

Although in (1.1) and (1.2) the spheres were assumed to be separate and free of external 
forces (in this case the integral (1.1) is invariant with respect to the choice of the refer- 
ence origin x ), however /lo/ implies that (1.1) also holds in the case when aggregates with 
internal contact forces acting between the particles are present, provided #at the origin 
of reference x in integral (1.1) is the same for all particles of the aggregate. Thus a 
specific total force dipole for a doublet is equal to twice the limit of expression (1.3) as 
15 -co, since the free relative motion along the line connecting the centres, in the limit as 
e +O,makes no contribution to the total dipole (see (4.5) of /7/). As a result we can use 
(1.2) in the generalized sense, adding to the volume integral the corresponding surface in- 
tegralsinwhich p(r)& have been replaced by P*dS and P**dS. The term containing e&,x0+ 
r) - E contributes nothing to the surface integrals, nor to the volume integral provided that 
in the latter integral we carry out the first integration over the angle variables (which is 
allowed by virtue of the absolute convergence of the integral). 

In the case in question the axial. symmetry implies that ZrlP = X,p = -X&'/2, therefore 

&j = I*T, + Z&Zij (2.ll) 

tvi++++k&)cz) 

The upper sign corresponds to E,,> 0 and the lower one to E,,< 0. 
three times as small as the corresponding Trouton viscosity /13/. 

The quantity I'* is 

Using (1.2) and (2.9)-(2.10) and the method described above, we obtain 

(2.12) 
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To calculate K, L,M,A,B at C>!C? , we have used exact methods as well as the remote and 
near asymptotic representations /7/. The quantities K*, K* + "/,L* + z!JP are given in 171, 

and the limiting values of the functions L and B (which have, unlike M, a finite derivative 
at a = 0 provided that t< cm), were found by linear extrapolation. This yields all quantit- 
ies needed in (2.12). The contribution of the remote region 5 >6,>1 to each of the in- 
tegrals of (2.12) is of order O(&,*). 

Below we give the numerical results obtained: 

A.=0 0.25 0.5 
k+=l.OZ 1.46 1.813 2'49 3'33 333f3 4549 5l:2 
k_= 1.40 1.88 2.31) 2:96 3:80 4131 4:90 5:57 

When h=w, we have in accordance with /l/, 

and (2.11) also holds for any steady-state expansion flows. At h = m the exact value of 
k* equal to 7.0, replaces the approximate estimate of 7.6 given in /I/. 

The difference between the valuesof k+ and k-1 at h<m represents a typical non- 
Newtonian effect. In the case of arbitrary steady state expansion flows the above method 
would lead, at h<co to the disappearanceof the proportionality between the stress deviator 
and Etf. 

3. Steady-state shear flow. When h<w, the case is characterized by an even more 
complex three-dimensional pattern of relative trajectories, than that for rigid spheres /ll/. 
Let the rate of the unperturbed flow in which the spheres 1 and 2 are immersed, have the form 
v+ =(+ + conat, 0,O) in a Cartesian system of coordinates xljxp,xs with origin at the centre 
of sphere 1 (XC 0). The integrals of relative motion are obtained from (2.1) and have the 

Here Es, &a = const along the corresponding trajectories. From (2.2) it 
O<Y(Z)<oo. We separate when r>2a the following regions of r-space: 

(3.1) 

follows #at 

and several possible types of relative trajectories. 
lo. Trajectories not belonging to Df U D,(e, > 0, .& + EC> 4/cpp (2) -Y (2)). The traject- 

ories arrive from infinity and depart to infinity without reaching the sphere P = &z. 
20. Trajectories arriving from infinity at the sphere P = 2a (they form the region 

(Df \ Dt) I-) {slsa> 01). 
30 Trajectories emerging fxom the sphere I' =2a 

re+o;o‘(Dr \ Dt) n {tlz~<O)). 

and going to infinity (theyformthe 

Trajectories emerging from the sphere r = 2a and returning to it (they form the 
region 'Df fl &I. 

SO. Closed trajectories (they form the region Df\ I),). 
When L = 0, we have 3 s 0 /7/ and region Df vanishes. When h>O , the mutual 

distribution of the regionDfandDtdepends on whether the inequality @(2)Y (2)C 4 holds. 

Numerical computations yield 
A=O.25 0.5 1 2 3 5 10 ?O 

~(2)~~2=0.12 0.17 0.24 0.32 0.37 0.44 0.54 0.65 

When L =5 oo , we have ~(2) = eo(see Sect.21 and’4 (2) ~0.76 ./ll/. Therefore avalue h,, > 20 
exists forwhich a,(2) V'mE = 1. Thequantity!& iS~OteaSytOCalCUlatee%Sct~ySinCeWhen h>t 

the region 5 - 2<$lmakes a largecontribution towards theintegral for 9, (2) and u(2). 
Fig.2 shows a typical pattern of relative trajectories in the 2$=0 plane for O<I<X,. 

The boundary of the regionDfis formed by rotation of the trajectories AlA,. A,A,. At&,, A,A, 

(with &= ON about the z, axis. Results obtained in /7/ imply that as ~-.,oo. the trajector- 

ies approach the qaxis as 
z,%l ?r@/&(i + 2Q [(Z + 35) (1 _t hP6-3 (3.2) 

The boundary of the region i& is formed by rotating the trajectories &A&,X. &&&(with 
ts =4~e~(2)_-(f~)) about the z1 axis and has, as L--00, a finite thickness 2aY% The closed 
trajectories lie outside the limits of the plane x8=0. 
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Fig.2 

when h>I,,, the outer boundary of 
Dt consists of two singly connected 

surfaces of revolution e,=O not reaching 
the sphere r = Zn, and the region Dt CD1 

consists of trajectories of type 4', with- 
out any trajectories of types 20 and 3O. 
When .h>&f the minimum distance between 
the surfaces &=O and the sphere r=2a 
is less than 4.7.10~*a (this can be found 
from the results of /7, ll/ by considering 
the limiting case of a=m). The only 
possible trajectories for the rigid 
spheres /llf Dr =$ are those of types lo 
and 5O. 

Below, we shall assumethat he&. 
_,; in Sect.2, the volume density on type 
lo and 20 trajectories is p(t) 1: q(r). The 
model of contact interaction admits of 

contact motion of the spheres (with relative velocity V l differing from (2.6) by an addi- 

tional term 2a0 X II) only on the segments where XI%> 0, with subsequent detachment when 
x1 = 0. This implies that in the steady state the shaded region with volume distribution 

p(r) sz 0 consists of type 3O and 4' trajectories. The boundary condition p -+=i will be 
restored in the shaded region at a considerable distance downstream, when the weak Brownian 
diffusion and (or) collective interactions are taken into account. 

The surface density P* differs from zero on the segments of the sphere r = 2a on which 
zZrZ > 0, s,*/a2 > cpa (2)I (2) simultaneously, and is given by the equation (2.8) with boundary 
condition P* -0 when x,Vas = p2(2)Pi(2f (the latter excludes the flow of phase particles 
along the surface I= 2a from the "forbidden" region in the steady-state mode). As a result 
we obtain (y is the angle between the r and the za axis) 

The surface of the film is formed by the trajectories (type 3O) departing from the sphere 
when x1 = 0,xz2/a4> q?(‘i?)Y(2). The integrals (3.1) yield the parametric representation z, = 
51 (E,yo) of this surface; the Lagrangian variable y. is equal to the angle 0 at the point 

of detachment of the trajectory. The Liouville surface equation for the density P** of the 
film yields cd.5 is the surface element) 

p** dS = 20‘(2--8*)P*(yo)&)cosypd~dCI 

fi--A)lt1*l 
(3.4) 

The volume distribution p(r) in the region of closed trajectories remains unknown, as 
in the case of rigid spheres /l/. Equation (2.7) yields only p (r) = C (Es, &I) q(r). It was. 
assumed in /l, 14/ that the formqfthe functions C&E) I) is determined by weak Brownian 
diffusion or by the weak collective interactions. The problem of the rigorous determination 
of C(&.,gs) will not be considered further. 

In the shear flow anly the components ZtiP,ZleP can differ from zero. The difficulty 
mentioned above hinders the exact computation of XrZp when h > 0. The region of closed 

trajectories however, makes no contribution to the integrals (1.2) for ZlrsIzr~s,~ssP irres- 

pective of the form of C&.,63). Using the results of /I/, we obtain 

for the differences between the normal stresses /13/. 
The integrals are considered in the generalized sense (as in Sect.21, and the volume 

integration extends only to the region (Dr\D,) n {zlq>O}. Using (3.3) and (3.4) we can find 

Ml--Q) 2y-$-z)M*+(y-sid@I 
( 

Nt =@ -2, 
I 
; M+ -Zy(L*+M*)J+ t+-sir.PT-2y)I 

T=ar~sin 
( 
(1-mac) [4-cP'(2)Y (')I "I 

2(2-B+) ! 

y=- sir+ -i-co.+2(t -QZzf 
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z=- i-$.--- (i-B/2) r sin&t ccosI. 
(I-_) 

(+_fg+-2!yql, 

The contribution of the region c> 64s 1 to I is of order 0 f&,-"f- We note that N,, 
N,-+O as x-c?&. 

When h = 0, there are no closed trajectories, and we can also obtain the shear viscos- 
ity 

P&/Co = 1 + C + b,c? ,i,,, = &lx (3.5) 

Here we assumed that KsO when h = 0 /7/. The contribution of the remote region 
6> 60>1 to k,h is of order O(&-a). 

The numerical values of @(2)6%'(2)/2 given above and the 

%h 
0 

k- 

asymptotic forms (3.21 together shaw that when & _ I,the region of 
closed trajectories is fairly "thin". At the outer boundary of 
the region (when & = 0) c = 1. Therefore, to obtain an approximate 

5 
value for the shear viscosity when h> 0, we assume that c(En, 
&3) z 1. In this case we can carry out the integration in the volume 
integral (1.2) for XT8 over the angle variables analytically. In 

3 the double integral in 5, y0 representing the contribution of the 
. i j density P.** to % integral integration in p. yields incomplete 

elliptic integrals of first and second kind. The contribution of 

't 
the density P+ to zfa is expressed in finite form in terms of 

f.4 I.8 3 K*,L*, ~*,B~,~{2~,~ (2). The final expression for the quadratic 

Fig.3 
coefficient k,h in the expansion of p&* is extremely bulky and 
therefore not given here. In the limit X+0 we have (3.5). 

The numerical results are given below 

A=0 0.23 0.5 
- N,==O.44 il.49 0,Ji 0132 02*7 0342 OS33 of;0 
-NN,=.0.3i 0.31 0,29 0:25 O:i9 0:15 0:lO 0.05 
k&=1.41 i.W 2.44 3.13 3.95 4.42 4.94 5.45 

Let us compare the values of ka with the experimetital data. The viscosity of dilute, 
stable oil-water emulsions with a high degree of monodispersivity (/xl= 200-900 sec-lr cBO.iB: 
0==1.25~ 1.75 or 1.75-2.25um,~~iO** N.sec.m-2 wasm~asuredin/6/inconditiansofs~ongshea~ 

flow, and standard methods were used to calculate the linear coefficient et and the quadratic 
coefficient k& in the expansion of p&k; the quantities keh are extremely sensitive to 

experimental errors in ~r,h/p, /6/. Fig.3 uses small circles to show the experimental pairs of 

values (a,, k,h) for emulsions with qzz 2.5 OL (i.e. without the factors retarding the internal 

circulation). The data corresponding to the black circles were obtained in /6/ by extra- 
polating the values of q, k,k for emulsions with a,>2,5a. in the limit of zero concentration 

of the emulsifier (when a,+2.5a). Judging from the results of /6/, we see that the extra- 
polated values of kh are less accurate. 

The curve in Fig.3 shows the theoretical computation. A more detailed check of the 

theory would require a direct experimental determination Of k& for emulsions with a,z2,5a 

for small X (when the approximation Ct&,&)=i does not introduce substantial. errors), and 

the determination of XI,&. 
The method given above together with the results obtained in /l/ can be applied to the 

polydisperse case, provided that the problem of the interaction of two liquid spheres of 
different radii in a linear flow field is solved, and the particle sire distribution function 

is known. 

4. Weak rheological flows of deflocculated emulsions. When there is Brownian 
motion, the volume distribution p(r, f) satisfies the relations /Z/ 

api& f div @V - D-VP) = 0, p+ 1 (r-+ 06) (4.1) 
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As in /2/, the tensor of relative diffusion of two liquid spheres is 

u(r)=B&T fnnG -j- (I -nn)H]r H=~(l!Tll- T&l 

Here k is Holtzman's constant, 'I' is the absolute temperature and TX,{& h), .7'rp(& A) are 
the coefficients of resistance denoted in /8/ by &l,&). We represent the presence of 
short-term stabilising repulsion forces by the boundary condition 

@V - D.vp)-n+O (1.-+24 (4.2) 

It should be expected that the distributions p(r),P*, P** obtained in Sects.2 and 3 
(except the vclume density on closed trajectories) can be obtained formally from the corres- 
ponding steady state problems (4-l), (4.21 in the limit Pe = 1 E~usptl(k~)+~. At least we 
can easily construct the boundary layers of thickness --ape* "blurring" the surface density 
Pi, and (2.8) can be obtained from the condition for matching the two-term boundary layer 
expansion with the outer solution p = 4 (r). The density P** is "blurred" by the subcharacter- 
istic boundary layer of thickness -a Pe+. However, the structure of the boundary layers 
is not required for computing Zil in the zero approximation in Pe"<l. 

In the other limiting case Pe< l(uII ~E/&~~<Pe-‘~~E~i*) we have, as in /2/, 

P (r, t1 f 1 - a2 (B&kT)-’ (n.E-n) Q (L) + . . . 

$(F?G~)-6611Q-$(5rA)-3Bfl 

Q-0(6-w), GdQld~-tO(~-e2) 

(4.31 

The meaning of the coefficients G and H implies that when 53 m, 

Using (4.4) and the results of /7/ we find, that a particular solution Q@(c) of (4.3) 
and solution Qr(5) of the corresponding homogeneous equation exists such that when t;-+m 

Qo (0 = --ls/~g ‘2, 91 (6) * S+ + *i,xt-’ (4.5) 

Relations (4.5) were used in computing the initial values 
For 6< 6, the functions Qt (c), Qt’ (&) 

QdtL Qi’ (Lf for SOme 6,s i. 
were found by numerical integration (and here the deri- 

vatives ~/~~,~/a~) did not have to be calculated). When E+Z (and X< oo) , we have 

GdQ,Jdr = C, + 0 (s), GdQ&6 + 2 (1 - A) = C, + 0 (E) 

The constantsC,were easily calculated numerically. 

00 (0 - CoQx (WA. 

The required solution is Q(f)= 
It can be shown that when &,-+oo and c- i, the computed values of Q(E) 

differ from the exact values by (I(&,-'), 
are of order 0 (1,*). 

although for Qr(c), and Qr(c) the corresponding errors 

Using the results obtained in /2/, we find that the mean stress tensor has Newtonian form 
with effective viscosity 

p'o = pe 11 + V, ac -I- k, (L) $1 (4.6) 

k 0= $a2+~~~~*d~+~~jj3Bqy+(FA--8)$ld6 
2 

Below we give numerical results 

k=O 0.25 0.5 
k.al.91 2.35 2.72 3128 5!ii 5% 

The direct contribution /2/ of the Brownian motion to k,detennined by the function Q(C), 
varies from 1.21 (L = 0) to 0.91 (h = 00). The value /14/ of 6.1 for k, at ~SIOO is less accur- 
ate due to the errors in determining J (see /I/) _ 

Amongst the rheological features of the model discussed we note the weakening under shear 
and axisymmetric tension (for small k) and the negative character of N,,N,. In this connec- 
tion we find qualitative agreement with the behaviour of model suspension /15/ of rigid charged 
spheres (without hydrodynamic interaction) in a weak electrolyte, although, unlike in /15/. 
We have for the model in question N, -NN, when h<l). 

The author thanks A.M. Golovin for his interest and S.I. Chernyshenko for pointing out 
certain inaccuracies in the preliminary computations. 
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ON THE ~TH~TI~AL DESCRIPTION OF SPIRAL WAVES IN 
DISTRIBUTED CHEMICAL SYSTEMS* 

G.A. DENISOV 

Selfexcited oscillatory modes in a chemically active medium of general 
form with diffusion are studied. The reactor is in the shape of a circle 
with impermeable boundaries and the medium is in mechanical equilibrium. 
Asymptotic forms are found for the case of a near-threshold value of the 
parameter for two kinds of selfexcited oscillations, rotating waves and 
standing symmetric waves, under the assumption that a vibrational loss of 
chemical equilibrium stability occurs. 

Rotating spiral (reverberator) and divergent concentric (donducting centre) waves of 
chemical concentrations or electrical excitation have been observed in experiments on vibra- 
tional modes in distributed biological and chemical systems /l--3/. The reverberator can have 

several branches (several spiral wave fronts rotate around one local section of the medium). 
Analogous modes are detected in the combustion of cylindrical specimens /4/. Different 

approaches (see /5-8/and the bibliography presented there) were used to describe such modes 

on the basis of diffusion equations with non-linear kinetics. ** In one of the approaches, the 

occurence of rotating waves was associated with loss of stability of the stationary spatially 
homogeneous mode, and therefore, was examined from the aspect of the theory of bifurcation of 
solutions of non-linear equations dependent on a parameter. The analytical difficulties that 

occur here were successfully overcome in /7, 8/ by using group methods of bifurcation theory 

/Q/. It was found that in the bifurcation situation examined, solutions, periodic in time, 

*Prikl.Matem.Mekhan.,48,2,293-301,1984 

** Dikanskii A.S., Diffusion equations with non-linear kinetics., Pushchino, Deposited in 
VINITI 10-04-80, No.1405-80. 


